Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery Electrode Material Li[Li1/9Ni1/3Mn5/9]O2
نویسندگان
چکیده
The overcapacity mechanism and high voltage process of the Li-excess electrode material Li[Li1/9Ni1/3Mn5/9]O2 are studied by solid-state NMR, X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy, combined with galvanostatic and potentiostatic intermittent titration electrochemical measurements. The cycling performance is improved noticeably when the material is cycled between potential windows of 5.3-2.5 V compared to 4.6-2.5 V. Diffraction data show that structural changes occur at high voltages, the solid-state NMR data of the same samples indicating that the high voltage processes above 4.4 V are associated with Li removal from the structure, in addition to electrolyte decomposition. The NMR spectra of the discharged samples show that cation rearrangements in the transition metal layers have occurred. The XAS spectra confirm that theMn oxidation state remains unchanged at 4+, whereas Ni is oxidized to Ni on charging to 4.4 V, returning to Ni on discharge, independent of the final charge voltage. A significant change of the shape of the Ni edge is observed in the 4.6-5.3 V potential range on charge,which is ascribed to a change in theNi local environment.NoO2 evolutionwas detected based on ex situ analysis of the gases evolved in the batteries, the TEM data showing that thick passivating films form on the electrodes. The results suggest that at least some of the oxygen loss from these lithium-excess materials occurs via a mechanism involving electrolyte decomposition.
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملHigh pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides†
High pressure–high temperature (HP/HT) methods are utilized to introduce structural modifications in the layered lithium transition metal oxides LiCoO2 and Li[NixLi1/3 2x/3Mn2/3 x/3]O2 where x 1⁄4 0.25 and 0.5. The electrochemical property to structure relationship is investigated combining computational and experimental methods. Both methods agree that the substitution of transition metal ions...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملIn-situ neutron diffraction study of the xLi2MnO3(1-x)LiMO2 (x=0,0.5; M=Ni, Mn, Co) layered oxide compounds during electrochemical cycling
The layered oxide compounds xLi2MnO3$(1 x)LiMO2 (M 1⁄4 Ni, Mn, Co) are of great interest as positive electrode materials for high energy density lithium-ion batteries. In-situ neutron diffraction was carried out to compare the structural changes between the classical layered compound Li[Ni1/3Mn1/3Co1/3]O2 (x 1⁄4 0) and lithium-excess layered compound Li[Li0.2Ni0.18Mn0.53Co0.1]O2 (x 1⁄4 0.5) dur...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کامل